151 research outputs found

    Genetic reference populations of laboratory mice : a new generation of animal models for human diseases

    Get PDF
    The mouse is the most used laboratory animal to study human diseases and to develop new therapeutic approaches. However, the results obtained in mice are not always translatable to humans. One reason is the reduced genetic diversity of mouse laboratory strains which is much smaller than that of human populations. Moreover, a study carried on a single mouse strain cannot reproduce the diversity of responses observed in humans. Mouse geneticists have developed novel collections of strains which encompass genetic variations at least similar to that of human populations. They provide not only new and highly varied phenotypes but also the possibility to develop systems biology approaches at an unprecedented scale.La souris est l'animal de laboratoire le plus utilisé pour étudier les maladies humaines et développer de nouvelles approches thérapeutiques. Toutefois, les résultats obtenus chez les souris ne sont pas toujours transposables à l'homme. L'une des raisons est la faible diversité génétique des lignées de souris de laboratoire, qui est bien moindre que celle des populations humaines. A fortiori, une étude portant sur une seule lignée de souris ne peut pas reproduire la diversité des réponses observées chez l'homme. Les généticiens de la souris ont développé de nouvelles collections de lignées qui comportent une variabilité génétique au moins égale à celle des populations humaines. Elles permettent non seulement d'obtenir des phénotypes nouveaux et trÚs variés mais aussi de développer des approches de biologie des systÚmes à une échelle inégalée

    Gene expression regulation in the context of mouse interspecific mosaic genomes

    Get PDF
    The testis transcriptome of mouse strains containing homozygous segments of Mus spretus origin in a Mus musculus background was analyzed

    Fidgetin-Like1 Is a Strong Candidate for a Dynamic Impairment of Male Meiosis Leading to Reduced Testis Weight in Mice

    Get PDF
    Chantier qualitĂ© GAInternational audienceBACKGROUND: In a previous work, using an interspecific recombinant congenic mouse model, we reported a genomic region of 23 Mb on mouse chromosome 11 implicated in testis weight decrease and moderate teratozoospermia (∌20-30%), a Quantitative Trait Locus (QTL) called Ltw1. The objective of the present study is to identify the gene underlying this phenotype. RESULTS: In the present study, we refined the QTL position to a 5 Mb fragment encompassing only 11 genes. We showed that the low testis weight phenotype was due to kinetic alterations occurring during the first wave of the spermatogenesis where we could point out to an abnormal lengthening of spermatocyte prophase. We identify Fidgetin-like 1 (Fignl1) as the gene underlying the phenotype, since if fulfilled both the physiological and molecular characteristics required. Indeed, amongst the 11 positional candidates it is the only gene that is expressed during meiosis at the spermatocyte stage, and that presents with non-synonymous coding variations differentiating the two mouse strains at the origin of the cross. CONCLUSIONS: This work prompted us to propose Fignl1 as a novel actor in mammal's male meiosis dynamics which has fundamental interest. Besides, this gene is a new potential candidate for human infertilities caused by teratozoospermia and blockades of spermatogenesis. In addition this study demonstrates that interspecific models may be useful for understanding complex quantitative traits

    Identification of Quantitative Trait Loci responsible for embryonic lethality in mice assessed by ultrasonography

    Get PDF
    Chantier qualité GAInternational audienceRecurrent Spontaneous Abortion (RSA) is a frequent pathology affecting 1 to 5% of couples. In ~50 % of cases, the aetiology is unknown suggesting a subtle interaction between genetic and environmental factors. Previous attempts to describe genetic factors using the candidate gene approach have been relatively unsuccessful due to the physiological, cellular and genetic complexity of mammalian reproduction. Indeed, fertility can be considered as a quantitative feature resulting from the interaction of genetic, epigenetic and environmental factors. Herein, we identified Quantitative Trait Loci (QTL) associated with diverse embryonic lethality phenotypes and the subsequent embryonic resorption in 39 inter-specific recombinant congenic mice strains, using in vivo ultrasound bio-microscopy. The short chromosomal intervals related to the phenotypes will facilitate the study of a restricted number of candidate genes which are potentially dysregulated in patients affected by RSA

    A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice.

    Get PDF
    Two years into the COVID-19 pandemic there is still a need for vaccines to effectively control the spread of novel SARS-CoV-2 variants and associated cases of severe disease. Here we report a messenger RNA vaccine directly encoding for a nanoparticle displaying 60 receptor binding domains (RBDs) of SARS-CoV-2 that acts as a highly effective antigen. A construct encoding the RBD of the Delta variant elicits robust neutralizing antibody response, and also provides protective immunity against the Delta variant in a widely used transgenic mouse model. We ultimately find that the proposed mRNA RBD nanoparticle-based vaccine provides a flexible platform for rapid development and will likely be of great value in combatting current and future SARS-CoV-2 variants of concern

    Refined mapping of a quantitative trait locus on chromosome 1 responsible for mouse embryonic death

    Get PDF
    Recurrent spontaneous abortion (RSA) is defined as the loss of three or more consecutive pregnancies during the first trimester of embryonic intrauterine development. This kind of human infertility is frequent among the general population since it affects 1 to 5% of women. In half of the cases the etiology remains unelucidated. In the present study, we used interspecific recombinant congenic mouse strains (IRCS) in the aim to identify genes responsible for embryonic lethality. Applying a cartographic approach using a genotype/phenotype association, we identified a minimal QTL region, of about 6 Mb on chromosome 1, responsible for a high rate of embryonic death (similar to 30%). Genetic analysis suggests that the observed phenotype is linked to uterine dysfunction. Transcriptomic analysis of the uterine tissue revealed a preferential deregulation of genes of this region compared to the rest of the genome. Some genes from the QTL region are associated with VEGF signaling, mTOR signaling and ubiquitine/proteasome-protein degradation pathways. This work may contribute to elucidate the molecular basis of a multifactorial and complex human disorder as RSA

    Nasal Bone Shape Is under Complex Epistatic Genetic Control in Mouse Interspecific Recombinant Congenic Strains

    Get PDF
    Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments.The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∌32 Mb) and 18 (∌13 Mb) showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains.Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors

    Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice

    Get PDF
    Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice

    Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations

    Get PDF
    The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world’s tropical belt over the past four centuries, after the evolution of a “domestic” form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector–host contact but also as a result of enhanced vector susceptibility
    • 

    corecore